

Module Title:	Manufacturing Technology	ı, Design &		L	_evel	l: 5		Cred Value		20
Module code:	ENF507	Is this a new module?	No Code of n being rep							
Cost Centre:	GAME	JACS3 co	<u>3</u> code:			H712				
Trimester(s) in which to be 1, 2 8			With effect from: Sept			ember	16			
	School: Applied Science, Computing & Engineering			Module Bobby Mar			lanesh	1		
Scheduled learning and teaching hours										60 hrs
Guided independent study			140 hrs							
Placement										0 hrs
Module duration (total hours) 200				200 hrs						
Programme(s) in which to be offered Core Option						Option				
FdEng Industrial Engineering						[✓		
Pre-requisites										
None										

Derogations

A derogation from regulations has been approved for this module which means that whilst the pass mark is 40%, each element of assessment requires a minimum mark of 30% for the module to be passed overall.

Office use only	
Initial approval June 16	
APSC approval of modification Enter date of approval	Version 1
Have any derogations received SQC approval?	Yes ✓ No 🗆

Module Aims

To develop a deeper knowledge and understanding of manufacturing processes, technologies and equipment, also examine the design implications affecting the manufacturing process.

Intended Learning Outcomes

Key skills for employability

- KS1 Written, oral and media communication skills
- KS2 Leadership, team working and networking skills
- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At	the end of this module, students will be able to	Key Skills		
1	Interpret a design brief and produce a design specification	KS1	KS10	
	through researching and synthesising alternatives	KS3		
		KS4		
2	Select suitable machining processes and techniques for	KS1	KS10	
	generating various geometrical forms to a given specification	KS3		
		KS4		
3	Analyse manufacturing methods with consideration to economics and quality issues.	KS1	KS10	
		KS3		
		KS4		

Assessment:

The portfolio will incorporate all design work, inclusive of analysis of the theoretic aspects of manufacturing, simulations, drawings and details of practical work supporting the theory.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1-3	Portfolio	50%		2000
2	1-3	Portfolio	50%		2000

Learning and Teaching Strategies:

A series of lectures, supported by relevant video and tutorial sessions will provide the principles and theoretical aspects of the module. Whilst the practical aspects will be developed in the machine shop and computer labs or from on-site experience and work integrated assignments.

Syllabus outline:

- Manufacturing methods: selection of methods, key design factors: design form, materials type and properties, quality requirements, available equipment, processing capability, costs, labour skills. Analysis of methods, design criteria, decision criteria (which, why, alternatives, suitability).
- Total Costs: material, labour, overheads; fixed and variable costs; relationships of manufacturing method, complexity of design form, surface finish, relative cost. Breakeven analysis.
- Standardisation: BS/ISO/industry-specific standards relevant to design form/materials; standard components/parts/fittings; preferred number methods for detection and standardisation; cost advantages of standard parts (design, development, tooling, planning, choice, labour); ease of replacement, interchangeability. Advantages and disadvantages.
- Process requirements: factors affecting material requirements: form, size, weight, processing method, quality, quantity, availability, service life, characteristics (mechanical, electrical, chemical).
- Economic Assembly: analytical (questioning) approach to select method. 'Value Engineering' approach: evaluate specification, validity of product; minimise variation between similar components, sequencing of assembly stages; symmetrical and asymmetrical parts; justify number of components used; suitability for automatic feed and assembly (FMS and robots), unidirectional component location, ease of handling, positioning, stacking, accessibility within assembly.

Bibliography:

Essential reading

Serope Kalpakjian (2009) Manufacturing Engineering and Technology, Pearson

Other indicative reading

Helmi A Youssef (2011) Manufacturing Technology, CRC Press

Rob Thompson (2007) *Manufacturing Processes for Design Professionals*, Thames & Hudson